BIOINFORMATICS MINOR

Bioinformatics is a highly interdisciplinary STEM field that integrates computational and statistical methods for analyzing large biological data sets. Bioinformaticians apply their biological and computational sciences backgrounds to develop, utilize, and optimize new computational tools to organize, synthesize, and analyze the rapidly increasing amount of biological and biomedical data.

The Bioinformatics minor at Loyola provides students with training and opportunities in this ground-breaking discipline, opening doors to career advancement and post-graduate possibilities for years to come.

Related Programs

Major

 Bioinformatics (BS) (https://catalog.luc.edu/undergraduate/artssciences/bioinformatics/bioinformatics-bs/)

Combined

 Bioinformatics (BS/MS) (https://catalog.luc.edu/undergraduate/ accelerated-bachelors-masters-program/bioinformatics-bsms/)

Curriculum

Degree Requirements

The following degree requirements are for students who have declared a minor in Bioinformatics.

Code	Title	Hours
Biology Fundamental Courses		
BIOL 101	General Biology I	3
BIOL 282	Genetics	3
BIOL 388	Bioinformatics	3
Computer Science Fundamental Courses		
MATH 215	Object-Oriented Programming with Mathematics	3
Math/Stats Fundamental Courses		
MATH 131	Applied Calculus I	3
MATH 132	Applied Calculus II	3
STAT 335	Introduction to Biostatistics	3
or STAT 203	Introduction to Probability & Statistics	
STAT 337	Quantitative Methods in Bioinformatics (Spring only)	3
Bioinformatics Electives		
Select one of the	following:	3
BIOL 387	Genomics (Spring only)	
BIOL 392	Metagenomics (Fall only)	
BIOI 397	Bioinformatics Survey	
Total Hours		27

Maybe substituted with COMP 170 Introduction to Object-Oriented Programming

Suggested Sequence of Courses

We suggest taking the 100-level or 200-level first as they are often prerequisites for advanced courses. For example, BIOL 101 General Biology I is a prerequisite for BIOL 282 Genetics, which, in turn, is a

prerequisite for BIOL 388 Bioinformatics. For assistance with planning your course sequence for the Bioinformatics minor, please contact your Academic or Bioinformatics advisor.

Additional Policies

There are no limits to **course-sharing** between the Bioinformatics minor and other majors/minors. However, the course-sharing policies of the other majors/minors must be considered.

The courses required for the minor also satisfy the following university Core Curriculum (https://catalog.luc.edu/undergraduate/university-requirements/university-core/) requirements: scientific literacy (6 credits) and quantitative analysis (3 credits).

Learning Outcomes

Students minoring in Bioinformatics will be able to:

- · explain genetics concepts,
- · apply computational methods to biological data,
- · apply statistical methods to biological data, and
- evaluate computational & statistical methods for the analysis of biological data.