ENGINEERING WITH A BIOMEDICAL ENGINEERING SPECIALIZATION (BS)

Biomedical Engineers blend traditional engineering techniques with biological sciences and medicine to improve the quality of human health and life. We believe all patients should receive high-quality medical devices, regardless of their ability to pay. Our students learn to design and test robust electrical medical devices, in preparation for a medical device to be cleared or approved by the Food and Drug Administration.

Related Programs

Major

- · Engineering with a Computer Engineering Specialization (BS) (https:// catalog.luc.edu/undergraduate/arts-sciences/engineering/computerengineering-bs/)
- Engineering with an Environmental Engineering Specialization (BS) (https://catalog.luc.edu/undergraduate/arts-sciences/engineering/ environmental-engineering-bs/)

Curriculum

Code	Title	Hours		
Engineering Design				
ENGR 101	Introduction to Engineering Design	4		
ENGR 201	Experiential Engineering	3		
Engineering Core				
ENGR 102	Engineering Freshman Seminar	1		
ENGR 321	Electronic Circuits & Devices	2		
ENGR 322	Chemical & Thermal Processes	3		
ENGR 323	Digital Electronic & Computer Engineering	3		
ENGR 324	Mechanics	3		
ENGR 324L	Core Engineering Lab	1		
ENGR 325	Materials Engineering	3		
Engineering Syst	ems			
ENGR 311	Engineering Systems I	3		
ENGR 312	Engineering Systems II	3		
ENGR 313	Engineering Systems III	3		
Specialty Engineering Courses				
ENGR 341	Medical Device Systems	3		
ENGR 341L	Medical Device Systems Laboratory	1		
ENGR 342	Medical Device Software Development I	3		
ENGR 343	Medical Device Software Development II	3		
ENGR 381	Biomedical Engineering Capstone Design I	4		
ENGR 391	Biomedical Engineering Capstone Design II	4		
Math & Science Courses				
BIOL 101 & BIOL 111	General Biology I and General Biology I Lab	4		
CHEM 171	General Chemistry for Engineering Science Major	ors 3		
CHEM 173	General Chemistry Lab for Engineering Science Majors	1		
COMP 170	Introduction to Object-Oriented Programming	3		
MATH 161	Calculus I	4		

Total Hours		86
STAT 203	Introduction to Probability & Statistics	3
PHYS 122 & PHYS 112L	College Physics II with Calculus Lecture/ Discussion and College Physics Lab II	4
PHYS 121	College Physics I with Calculus Lecture/ Discussion	3
MATH 266	Differential Equations and Linear Algebra	3
MATH 263	Multivariable Calculus	4
MATH 162	Calculus II	4

Suggested Sequence of Courses

Course	Title	Hours
Freshman		
Fall		
ENGR 101	Introduction to Engineering Design ¹	4
MATH 161	Calculus I ²	4
BIOL 101	General Biology I ²	3
BIOL 111	General Biology I Lab ²	1
PHYS 121	College Physics I with Calculus Lecture/ Discussion ²	3
UNIV 101	First Year Seminar ³	1
	Hours	16
Spring		
COMP 170	Introduction to Object-Oriented Programming ²	3
MATH 162	Calculus II ²	4
PHYS 122	College Physics II with Calculus Lecture/ Discussion ²	3
PHYS 112L	College Physics Lab II 2	1
UCWR 110	Writing Responsibly ³	3
LUC Core ³		3
ENGR 102	Engineering Freshman Seminar ⁴	1
	Hours	18
Sophomore		
Fall		
ENGR 201	Experiential Engineering ¹	3
MATH 263	Multivariable Calculus ²	4
CHEM 171	General Chemistry for Engineering Science Majors ²	3
CHEM 173	General Chemistry Lab for Engineering Science Majors ²	1
LUC Core ³		3
Foreign Language 101 ³		
	Hours	17
Spring		
ENGR 311	Engineering Systems I ⁵	3
ENGR 321	Electronic Circuits & Devices ⁴	2
MATH 266	Differential Equations and Linear Algebra ²	3
LUC Core ³		3
LUC Core ³		3
Foreign Language 102 ³		
	Hours	17

Junior Fall Engineering Systems II 5 **ENGR 312** Chemical & Thermal Processes 4 **ENGR 322** 3 Digital Electronic & Computer Engineering 4 3 **ENGR 323** Mechanics 4 **ENGR 324** 3 Core Engineering Lab 4 ENGR 324L 1 LUC Core 3 3 Hours 16 **Spring** Engineering Systems III 5 3 **ENGR 313** Materials Engineering 3 **ENGR 325** Medical Device Systems 6 3 **ENGR 341** Medical Device Systems Laboratory ⁶ ENGR 341L 1 Introduction to Probability & Statistics 2 3 **STAT 203** LUC Core 3 3 16 Hours Senior Fall **ENGR 342** Medical Device Software Development I 6 3 **ENGR 381** Biomedical Engineering Capstone Design I 4 LUC Core 3 3 LUC Core 3 3 LUC Core 3 3 16 Hours Spring Medical Device Software Development II 6 3 **ENGR 343 ENGR 391** Biomedical Engineering Capstone Design II 4 LUC Core 3 3 LUC Core 3 3 Hours 13 **Total Hours** 129

- 1 Engineering Design
- Math & Science Courses
- 3 LUC Core/Foreign Language
- ⁴ Engineering Core
- ⁵ Engineering Systems
- ⁶ Specialty Engineering Courses

Learn more at LUC.edu/engineering (https://www.luc.edu/engineering/)

College of Arts and Sciences Graduation Requirements

All Undergraduate students in the College of Arts and Sciences are required to take two Writing Intensive courses (6 credit hours) as well as complete a foreign language requirement at 102-level or higher (3 credit hours) or a language competency test. More information can be found here (https://www.luc.edu/cas/college-requirements/).

Additional Undergraduate Graduation Requirements

All Undergraduate students are required to complete the University Core, at least one Engaged Learning course, and UNIV 101. SCPS students are not required to take UNIV 101. Nursing students in the Accelerated BSN program are not required to take core or UNIV 101. You can find more information in the University Requirements (https://catalog.luc.edu/undergraduate/university-requirements/) area.

Learning Outcomes

Engineering - ABET Student Outcomes

Student outcomes describe what students are expected to know and be able to do by the time of graduation. Our students will possess:

- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering and mathematics.
- An ability to apply engineering process to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- · An ability to communicate effectively with a range of audiences.
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.