STATISTICS (BS)

Students earning a B.S. in Statistics will acquire knowledge of a broad range of statistical techniques and methods, an understanding of the mathematical underpinnings of these methods and techniques, and the computational skills, such as R and SAS, to apply and implement these methods using real data. Statistics majors are in high demand in industry in a wide array of fields such as medical research, technology companies, pharmaceuticals, insurance, finance, government, genetics, public health, sports, and epidemiology to name a few.

Related Programs

Master's

 Applied Statistics (MS) (https://catalog.luc.edu/graduateprofessional/graduate-school/arts-sciences/mathematics-statistics/ applied-statistics-ms/)

Combined

- Mathematics Education Track/Applied Statistics (BS/MS) (https:// catalog.luc.edu/undergraduate/accelerated-bachelors-mastersprogram/mathematics-education-track-bs-applied-statistics-ms/)
- Mathematics and Computer Science/Applied Statistics (BS/MS) (https://catalog.luc.edu/undergraduate/accelerated-bachelorsmasters-program/mathematics-computer-science-bs-appliedstatistics-ms/)

Curriculum

AP Credit Policies (https://catalog.luc.edu/undergraduate/arts-sciences/ mathematics-statistics/#policiestext)

Code	Title	Hours
MATH 161	Calculus I	4
MATH 162	Calculus II	4
MATH 212	Linear Algebra	3
MATH 263	Multivariable Calculus	4
STAT 203	Introduction to Probability & Statistics	3
or STAT 335	Introduction to Biostatistics	
STAT 303	SAS Programming & Applied Statistics	3
STAT 304	Introduction to Probability	3
STAT 305	Introduction to Mathematical Statistics	3
STAT 307	Statistical Design & Analysis of Experiments (capstone)	3
STAT 308	Applied Regression Analysis	3
Science Requirem	nent	
Select two of the	following:	6
ANTH 101	Human Origins	
ANTH 103	Biological Background Human Social Behavior	
BIOL 101	General Biology I	
BIOL 102	General Biology II	
CHEM 101	General Chemistry A Lecture/Discussion	
CHEM 102	General Chemistry B Lecture/Discussion	
CHEM 160	Chemical Structure and Properties	
CHEM 180	Chemical Reactivity I	
ENVS 101	The Scientific Basis of Environmental Issues	
ENVS 218	Biodiversity & Biogeography	

	Total Hours			
	STAT 388	Topics		
	STAT 370	Data Science Consulting		
	STAT 351	Nonparametric Statistical Methods		
	STAT 344	Longitudinal Data Analysis and Mixed Modelling		
	STAT 338	Predictive Analytics		
	STAT 337	Quantitative Methods in Bioinformatics		
	STAT 336	Advanced Biostatistics		
	STAT 321	Computational Aspects of Modeling and Simulation		
	STAT 311	Applied Survival Analysis		
	STAT 310	Categorical Data Analysis		
	STAT 306	Intro to Stochastic Processes		
	Select three of th	e following:	9	
	Electives			
	PHYS 122	College Physics II with Calculus Lecture/ Discussion		
	PHYS 121	College Physics I with Calculus Lecture/ Discussion		
	ENVS 224	Climate & Climate Change		

Note: This degree has waivers for both Quantitative and Scientific core.

Suggested Sequence of Courses

Note: This is only one possibility. Among other things, depending on initial math placement, which can range from MATH 100 to MATH 263, the schedule will look very different. Especially for students starting at MATH 161 or above, there is a lot of space to pursue a minor or even a second major.

Course	Title	Hours
Year 1		
Fall		
MATH 161	Calculus I	4
	Hours	4
Spring		
MATH 162	Calculus II	4
STAT 203	Introduction to Probability & Statistics	3
	Hours	7
Year 2		
Fall		
MATH 263	Multivariable Calculus	4
STAT 303	SAS Programming & Applied Statistics	3
Science Requirement		3
	Hours	10
Spring		
MATH 212	Linear Algebra	3
STAT 308	Applied Regression Analysis	3
Science Requirement		3
	Hours	9
Year 3		
Fall		
STAT 304	Introduction to Probability	3
	Hours	3

Spring

	Total Hours	48
	Hours	3
For students in de class	partmental honors: Additional 300-level math	
300-level Major Ele	ective	3
Spring		
	Hours	6
300-level Major Elective		3
	Experiments	
STAT 307	Statistical Design & Analysis of	3
Fall		
Year 4		
	Hours	6
300-level Major Elective		3
STAT 305	Introduction to Mathematical Statistics	3

College of Arts and Sciences Graduation Requirements

All Undergraduate students in the College of Arts and Sciences are required to take two Writing Intensive courses (6 credit hours) as well as complete a foreign language requirement at 102-level or higher (3 credit hours) or a language competency test. More information can be found here (https://www.luc.edu/cas/college-requirements/).

Additional Undergraduate Graduation Requirements

All Undergraduate students are required to complete the University Core, at least one Engaged Learning course, and UNIV 101. SCPS students are not required to take UNIV 101. Nursing students in the Accelerated BSN program are not required to take core or UNIV 101. You can find more information in the University Requirements (https://catalog.luc.edu/undergraduate/university-requirements/) area.

Learning Outcomes

- After completing STAT 203 and STAT 304, students majoring in statistics will understand the fundamentals of probability theory by applying them properly to statistical methods.
- After completing introductory statistics courses (STAT 203, STAT 303, STAT 303), students majoring in statistics will be able to analyze and interpret descriptive statistics through a report.
- Upon completing the program, students majoring in statistics will be able to properly use statistical reasoning as it applies to inferential methods in a written analysis and/or oral presentation.
- Upon completing the program, students majoring in statistics will be able to create and interpret statistical models including understanding the limitations of the model in a written analysis and/ or oral presentation.
- Upon completing the program, students majoring in statistics will be able to use statistical software to generate appropriate output for data analysis.